Ordinals价格
(欧元)€6.987
-€0.27529 (-3.80%)
EUR
无法搜索到该币种。请检查您的拼写或重新搜索币种名称。
市值
€1.47亿
流通总量
2,100万 / 2,100万
历史最高价
€82.21
24 小时成交量
€2,677.24万
1.8 / 5


了解Ordinals
ORDI(Ordinals)是一种基于比特币区块链的创新加密货币,旨在通过为单个聪(satoshi)铭刻数据来实现独特数字资产的创建。与传统代币不同,ORDI借助比特币的安全性和去中心化特性,打造具有稀缺性的可收藏资产。其核心创新在于允许用户直接在比特币的最小单位上“铭刻”数据,为数字所有权和创意应用开辟了新可能。ORDI生态系统支持多种应用场景,包括数字艺术、收藏品以及未来可能出现的去中心化身份等用例。作为首个为比特币引入此功能的项目之一,ORDI标志着比特币从单纯的价值存储向更广泛功能扩展的重要一步。
本内容由 AI 生成
免责声明
本页面的社交内容 (包括由 LunarCrush 提供支持的推文和社交统计数据) 均来自第三方,并按“原样”提供,仅供参考。本文内容不代表对任何数字货币或投资的认可或推荐,也未获得欧易授权或撰写,也不代表我们的观点。我们不保证所显示的用户生成内容的准确性或可靠性。本文不应被解释为财务或投资建议。在做出投资决策之前,评估您的投资经验、财务状况、投资目标和风险承受能力并咨询独立财务顾问至关重要。过去的表现并不代表未来的结果。您的投资价值可能会波动,您可能无法收回您投资的金额。您对自己的投资选择自行承担全部责任,我们对因使用本信息而造成的任何损失或损害不承担任何责任。提供外部网站链接是为了用户方便,并不意味着对其内容的认可或控制。
请参阅我们的 使用条款 和 风险警告,了解更多详情。通过使用第三方网站(“第三方网站”),您同意对第三方网站的任何使用均受第三方网站条款的约束和管辖。除非书面明确说明,否则欧易及其关联方(“OKX”)与第三方网站的所有者或运营商没有任何关联。您同意欧易对您使用第三方网站而产生的任何损失、损害和任何其他后果不承担任何责任。请注意,使用第三方网站可能会导致您的资产损失或贬值。本产品可能无法在所有司法管辖区提供或适用。
请参阅我们的 使用条款 和 风险警告,了解更多详情。通过使用第三方网站(“第三方网站”),您同意对第三方网站的任何使用均受第三方网站条款的约束和管辖。除非书面明确说明,否则欧易及其关联方(“OKX”)与第三方网站的所有者或运营商没有任何关联。您同意欧易对您使用第三方网站而产生的任何损失、损害和任何其他后果不承担任何责任。请注意,使用第三方网站可能会导致您的资产损失或贬值。本产品可能无法在所有司法管辖区提供或适用。
Ordinals 的价格表现
近 1 年
-77.22%
€30.67
3 个月
+15.75%
€6.04
30 天
-3.41%
€7.23
7 天
-22.45%
€9.01
Ordinals 社交媒体动态
快捷导航
Ordinals购买指南
开始入门数字货币可能会让人觉得不知所措,但学习如何购买比您想象的要简单。
预测 Ordinals 的价格走势
Ordinals 未来几年值多少?看看社区热议,参与讨论一波预测。
查看 Ordinals 的价格历史
追踪 Ordinals 代币的价格历史,实时关注持仓表现。您可以通过下方列表快捷查看开盘价、收盘价、最高价、最低价及交易量。

Ordinals 常见问题
目前,一个 Ordinals 价值是 €6.987。如果您想要了解 Ordinals 价格走势与行情洞察,那么这里就是您的最佳选择。在欧易探索最新的 Ordinals 图表,进行专业交易。
数字货币,例如 Ordinals 是在称为区块链的公共分类账上运行的数字资产。了解有关欧易上提供的数字货币和代币及其不同属性的更多信息,其中包括实时价格和实时图表。
由于 2008 年金融危机,人们对去中心化金融的兴趣激增。比特币作为去中心化网络上的安全数字资产提供了一种新颖的解决方案。从那时起,许多其他代币 (例如 Ordinals) 也诞生了。
查看 Ordinals 价格预测页面,预测未来价格,帮助您设定价格目标。
深度了解Ordinals
ORDI 是比特币区块链上第一个使用 BRC-20 可替代代币标准创建的代币。
ESG 披露
ESG (环境、社会和治理) 法规针对数字资产,旨在应对其环境影响 (如高能耗挖矿)、提升透明度,并确保合规的治理实践。使数字代币行业与更广泛的可持续发展和社会目标保持一致。这些法规鼓励遵循相关标准,以降低风险并提高数字资产的可信度。
资产详情
名称
OKCoin Europe Ltd
相关法人机构识别编码
54930069NLWEIGLHXU42
代币名称
ORDI
共识机制
The Bitcoin blockchain network uses a consensus mechanism called Proof of Work (PoW) to achieve distributed consensus among its nodes. Here's a detailed breakdown of how it works: Core Concepts 1. Nodes and Miners: Nodes: Nodes are computers running the Bitcoin software that participate in the network by validating transactions and blocks. Miners: Special nodes, called miners, perform the work of creating new blocks by solving complex cryptographic puzzles. 2. Blockchain: The blockchain is a public ledger that records all Bitcoin transactions in a series of blocks. Each block contains a list of transactions, a reference to the previous block (hash), a timestamp, and a nonce (a random number used once). 3. Hash Functions: Bitcoin uses the SHA-256 cryptographic hash function to secure the data in blocks. A hash function takes input data and produces a fixed-size string of characters, which appears random. Consensus Process 1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a block. Each transaction must be validated by nodes to ensure it follows the network's rules, such as correct signatures and sufficient funds. 2. Mining and Block Creation: Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's data and passed through the SHA-256 hash function, produces a hash that is less than a target value. This target value is adjusted periodically to ensure that blocks are mined approximately every 10 minutes. Proof of Work: The process of finding this nonce is computationally intensive and requires significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly mined block to the network. 3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it to their copy of the blockchain and the process starts again with the next block. 4. Chain Consensus: The longest chain (the chain with the most accumulated proof of work) is considered the valid chain by the network. Nodes always work to extend the longest valid chain. In the case of multiple valid chains (forks), the network will eventually resolve the fork by continuing to mine and extending one chain until it becomes longer. For the calculation of the corresponding indicators, the additional energy consumption and the transactions of the Lightning Network have also been taken into account, as this reflects the categorization of the Digital Token Identifier Foundation for the respective functionally fungible group (“FFG”) relevant for this reporting. If one would exclude these transactions, the respective estimations regarding the “per transaction” count would be substantially higher.
奖励机制与相应费用
The Bitcoin blockchain relies on a Proof-of-Work (PoW) consensus mechanism to ensure the security and integrity of transactions. This mechanism involves economic incentives for miners and a fee structure that supports network sustainability: Incentive Mechanisms 1. Block Rewards: Newly Minted Bitcoins: Miners are incentivized by block rewards, which consist of newly created bitcoins awarded to the miner who successfully mines a new block. Initially, the block reward was 50 BTC, but it halves every 210,000 blocks (approx. every four years) in an event known as the "halving." Halving and Scarcity: The halving mechanism ensures that the total supply of Bitcoin is capped at 21 million, creating scarcity and potentially increasing value over time. 2. Transaction Fees: User Fees: Each transaction includes a fee paid by the user to incentivize miners to include their transaction in a block. These fees are crucial, especially as the block reward diminishes over time due to halving. Fee Market: Transaction fees are determined by the market, where users compete to have their transactions processed quickly. Higher fees typically result in faster inclusion in a block, especially during periods of high network congestion. For the calculation of the corresponding indicators, the additional energy consumption and the transactions of the Lightning Network have also been taken into account, as this reflects the categorization of the Digital Token Identifier Foundation for the respective functionally fungible group (“FFG”) relevant for this reporting. If one would exclude these transactions, the respective estimations regarding the “per transaction” count would be substantially higher.
信息披露时间段的开始日期
2024-09-24
信息披露时间段的结束日期
2025-09-24
能源报告
能源消耗
18917357.16232 (kWh/a)
可再生能源消耗
29.306425042 (%)
能源强度
6.87893 (kWh)
主要能源来源与评估体系
To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction.
Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables.
能源消耗来源与评估体系
The energy consumption of this asset is aggregated across multiple components:
To determine the energy consumption of a token, the energy consumption of the network(s) bitcoin is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
排放报告
DLT 温室气体排放范围一:可控排放
0.00000 (tCO2e/a)
DLT 温室气体排放范围二:外购排放
7793.87664 (tCO2e/a)
温室气体排放强度
2.83409 (kgCO2e)
主要温室气体来源与评估体系
To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction.
Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
市值
€1.47亿
流通总量
2,100万 / 2,100万
历史最高价
€82.21
24 小时成交量
€2,677.24万
1.8 / 5

