Kimi-Linear is a 3B active, <6T tokens experiment. Its architecture is nothing sci-fi (except it works) – NoPE MLA + fancy GatedDeltaNet.
this very strongly suggests to me that a) Gemini long-context attention doesn't have any secret sauce b) it's all about TPUs. No "Titans".

Context Arena Update: Added kimi-linear-48b-a3b-instruct [11-08] and kimi-k2 (Thinking) [11-06] to the MRCR leaderboards.
The Linear 48b results are fascinating! It actually outperforms the new Gemini 3.0 Pro Thinking on 4-needle and 8-needle tasks at higher context lengths (512k+). I've added it to 2needle, 4needle, and 8needle.
kimi-k2 (Thinking) lands lower on the leaderboards (Rank #22 for 2-needle AUC @ 128k), with a hard context ceiling around 262k. I did not run it for 2needle and 4needle.
All results at:
The performance curve for the Linear model is distinct: while it underperforms Gemini 3 significantly at shorter contexts (<=256k) on the difficult 8-needle test, its degradation slope is much flatter. Gemini starts higher and drops fast; Kimi starts lower but holds steady, overtaking Gemini at the higher end.
However, note that kimi-linear-48b has noticeable performance drops past 128k on the easier 2 & 4 needle tests. Additionally, due to lower token efficiency compared to Gemini/GPT, only ~60% of the 1M token tests successfully ran (hitting limits/OOM). So some caution with the results at the 1M level.
kimi-linear-48b results:
2-Needle Performance (@ 128k / @ 1M):
- AUC: 96.5% (vs Gem 3: 99.5%) / 81.7% (vs Gem 3: 85.5%)
- Pointwise: 96.0% (vs Gem 3: 99.0%) / 77.0% (vs Gem 3: 72.2%)
4-Needle Performance (@ 128k / @ 1M):
- AUC: 85.5% (vs 85.8%) / 62.7% (#1, beating Gem 3: 57.3%)
- Pointwise: 83.7% (vs 80.8%) / 51.5% (#1, beating Gem 3: 34.3%)
8-Needle Performance (@ 128k / @ 1M):
- AUC: 54.9% (vs 73.0%) / 43.8% (#1, beating Gem 3: 39.0%)
- Pointwise: 49.0% (vs 54.2%) / 35.3% (#1, beating Gem 3: 24.5%)
A very different architectural approach yielding impressive stability at scale. Because of its current price point, it is very competitive for long context (MRCR).
Enjoy.
@Kimi_Moonshot
@GoogleDeepMind @googleaidevs
@OpenAI @OpenAIDevs




6,82K
16
De inhoud op deze pagina wordt geleverd door derden. Tenzij anders vermeld, is OKX niet de auteur van het (de) geciteerde artikel(en) en claimt geen auteursrecht op de materialen. De inhoud is alleen bedoeld voor informatieve doeleinden en vertegenwoordigt niet de standpunten van OKX. Het is niet bedoeld als een goedkeuring van welke aard dan ook en mag niet worden beschouwd als beleggingsadvies of een uitnodiging tot het kopen of verkopen van digitale bezittingen. Voor zover generatieve AI wordt gebruikt om samenvattingen of andere informatie te verstrekken, kan deze door AI gegenereerde inhoud onnauwkeurig of inconsistent zijn. Lees het gelinkte artikel voor meer details en informatie. OKX is niet verantwoordelijk voor inhoud gehost op sites van een derde partij. Het bezitten van digitale activa, waaronder stablecoins en NFT's, brengt een hoge mate van risico met zich mee en de waarde van deze activa kan sterk fluctueren. Overweeg zorgvuldig of de handel in of het bezit van digitale activa geschikt voor je is in het licht van je financiële situatie.


